Decomposition of condensed phase energetic materials: interplay between uni- and bimolecular mechanisms.
نویسندگان
چکیده
Activation energy for the decomposition of explosives is a crucial parameter of performance. The dramatic suppression of activation energy in condensed phase decomposition of nitroaromatic explosives has been an unresolved issue for over a decade. We rationalize the reduction in activation energy as a result of a mechanistic change from unimolecular decomposition in the gas phase to a series of radical bimolecular reactions in the condensed phase. This is in contrast to other classes of explosives, such as nitramines and nitrate esters, whose decomposition proceeds via unimolecular reactions both in the gas and in the condensed phase. The thermal decomposition of a model nitroaromatic explosive, 2,4,6-trinitrotoluene (TNT), is presented as a prime example. Electronic structure and reactive molecular dynamics (ReaxFF-lg) calculations enable to directly probe the condensed phase chemistry under extreme conditions of temperature and pressure, identifying the key bimolecular radical reactions responsible for the low activation route. This study elucidates the origin of the difference between the activation energies in the gas phase (~62 kcal/mol) and the condensed phase (~35 kcal/mol) of TNT and identifies the corresponding universal principle. On the basis of these findings, the different reactivities of nitro-based organic explosives are rationalized as an interplay between uni- and bimolecular processes.
منابع مشابه
Lyman α photolysis of solid nitromethane (CH3NO2) and D3-nitromethane (CD3NO2)--untangling the reaction mechanisms involved in the decomposition of model energetic materials.
Solid nitromethane (CH3NO2) along with its isotopically labelled counterpart D3-nitromethane (CD3NO2) ices were exposed to Lyman α photons to investigate the mechanism involved in the decomposition of energetic materials in the condensed phase. The chemical processes in the ices were monitored online and in situ via infrared spectroscopy complimented by temperature programmed desorption studies...
متن کاملInterplay Between Lithium Bonding and Halogen Bonding in F3CX•••YLi•••NCCN and F3CX•••NCCN•••LiY Complexes (X = Cl, Br; Y = CN, NC)
MP2 calculations with cc-pVTZ basis set were used to analyze intermolecular interactions in F3CX···YLi···NCCN and F3CX···NCCN···LiY triads (X = Cl, Br; Y = CN, NC) which are connected via halogen and lithium bonds. Those complexes with the role of LiY as halogen acceptor and lithium donor show cooperativity with energy values ranging between -1.97 and -2.92 kJ mol...
متن کاملProbing the Dynamics of Ultra-Fast Condensed State Reactions in Energetic Materials
Title of Dissertation: Probing the Dynamics of Ultra-Fast Condensed State Reactions in Energetic Materials Nicholas W. Piekiel, Doctor of Philosophy, 2012 Directed By: Michael R. Zachariah, Professor Department of Mechanical Engineering and Chemistry Energetic materials (EMs) are substances with a high amount of stored energy and the ability to release that energy at a rapid rate. Nanothermites...
متن کاملAb Initio Studies on the Interplay between Unconventional B•••X Halogen Bond and Lithium/Hydrogen/Halogen Bond in HB(CO)2•••XCN•••YF (X = Cl, Br; Y = Li, H, Cl) Complexes
In this paper, ab initio calculations were performed on the ternary complex formed by HB(CO)2, XCN (X = Cl, Br) and YF (Y = Li, H, Cl). In these complexes boron act as a non-classical electron donor to form a unconventional halogen bond. The cooperative effect between the B•••X halogen bond and lithium/hydrogen/halogen bond was investigated. The calculated results show that the B•••X and N•••Y ...
متن کاملاستخراج پارامترهای نرخ واکنش آغازش و رشد (I&G) برای ماده منفجره Comp-B
One of the most important issues when working with energetic materials is their initiation. Of the various methods of energetic materials initiation in the military and civilian industries, shock initiation is of particular importance. Numerical and simulation study of the shock initiation of condensed phase explosives is related to models called burning rate models, which describe the conversi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 136 11 شماره
صفحات -
تاریخ انتشار 2014